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The method of successive approximations is used to analyze the behavior of the 
energy of two-dimensional turbulent perturbations in a flow with a constant 
average-velocity gradient. 

A continuous supply of energy isrequired to maintain turbulence in the flow of a 
viscous, incompressible liquid. This energy is supplied by the work performed by the aver- 
age flow in opposition to the Reynolds stresses. If no energy is supplied, the turbulence 
degenerates. The turbulence develops in regions with a nonvanishing gradient in the aver- 
age velocity~ so that it is important to study the behavior of the energy of turbulent per- 
turbations in such a flow. It would then be possible to evaluate the stability of the flow 
against perturbations. 

Let us examine the development of turbulent perturbations in the plan~-parallel flow 
of a viscous, incompressible liquid in which the average flow velocity is U = (~x2, 0, 0), 
where 8 = const. 

In accordance with the results of [I], we restrict this analysis to two-dimensional 
perturbations. 

The energy of the turbulent perturbations in a flow with a constant average-velocity 
gradient increases as time elapses, reaches a maximum (governed by the Reynolds number and 
the initial amplitude), and th~n slowly decays, according to the linear theory [2], which 
holds for short time intervals. If the initial amplitude is sufficiently high, the turbu- 
lent perturbations can reach a maximum energy beyond the scope of the linear approximation 
for fluctuations ~f§ velocity u(x, t), so that the terms in the original equations which 
are nonlinear in u(x, t) must be taken intoaccount. 

To solve the nonlinear problem we can use an infinite system of coupled moment equa- 
tions; since this system is not closed, certain additional assumptions must be made regard- 
ing the coupling of the higher-order moments in order to close the system. If for this 
purpose we use the assumption that the semiinvariants of the velocity of a fixed order n + 
i Z 4 vanish for both n = 3 (this is the Millionshchikov assumption [3], which permits the 
fourth-order moments to be expressed in terms of the second-order moments) and n = 4 (the 
fifth-order moments are expressed in terms of special combinations of the second- and third- 
order moments), then we find that the energy of the turbulent perturbations becomes negative 

[4]. 
For a flow with a constant average-velocity gradient we can make direct use of the 

Navier--Stokes equation for the velocity fluctuations, along with the system of moment equa- 
tions. This approach is more accurate in the sense that it does not rest on any assumptions 
equivalent to closing assumptions. The system of nonlinear equations obtained as a result 
can be solved by the method of successive approximations. Using this method, Khazen [5] 
found estimates for each of the approximations and specified some of their properties. 

In the present paper we attempt to extend the method of successive approximations to 
the problem of the nonlinear evolution of turbulent fluctuations in a flow with a constant 
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average-velocity gradient, and we discuss the results found in a numerical solution. 
-> 

The velocity fluctuations ui(x , t) in this type of flow satisfy the equation [5] 

du~ Ou~ Ou~ 1 Op § ~ _  
Oxj p Ox~ Ox~Ox~, 

I n t roduc in g  the  Four ie r  t ransform of  the  v e l o c i t y  f l u c t u a t i o n ,  

v,(k, t)= S u,(x, /)exp(ikx-'-*) d ;  

and using the incompressibility equation in order to eliminate the pressure fluctuations 
and in order to introduce the function (k, t) such that 

we reduce the problem to the solution of an equation for the function (~, t) [5]: 

Lop(k, t) = -kf 3 [(k, -k')ep(k', t ) (p(k--k ' ,  t )d~ (2) 

with the initial condition 

-> ->0 -~ r ~, 0) = A exp (-- k ~) ~ [6 (k - -  k~) -~ 5 (k q- ~o)], 
m , / /  

which corresponds to a system of eddy perturbations. 

Here and below, 
_ _ _ _  k S L - -  0 kl 0 2 klk~. + - - ,  

Ot Ok~ k 2 Re 

l ( i  -#) --- (k~kl + ~k;) (k~k~ --  k~k'~), 

and we are using the dimensionless variables E i = ki a-l, t = tB, and A = AaB -I (below we 
omit the tilde). 

In accordance with [5], we see a solution of Eq. (2) by the method of successive ap- 
proximations : 

(E 0 = ~ ~ (E 0, 
t ' = l  

(3) 

where 

t) 

(p~ (k-', 0 = O~ 6, O + ~B~ (f, 0. 

In the first, linear, approximation (r = l), we find equations for the functions D~(~, 
and BI(~, t): 

LD~ (~, 0 = 0, LS~ (k~ 0 = 0 (4) 

with initial conditions which follow from (3), 

/)1 ( i  0)=A exp (-- k ~) ~ [5 (k--  k~n) + 6 (k + kin.)], 
m , n  

B1 (k, 0) = 0. 

Using the  express ions  for  the f i r s t  i n t e g r a l s  

which are  found from the  c h a r a c t e r i s t i c  system for  Eqs. 
the f i r s t - a p p r o x i m a t i o n  equat ions  as [5] 

k~ exp {-- k~-- (k S + kl0~l exp , Re  k2! + klk2t2 + T . ' 

For r ~ 2, the functions Dr(T, t) and Br(~, t) satisfy the system of equations 

(5) 

(4), we can write the solution of 

(6) 
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where 

LxD,(-k, t ) = - -  k-- i- f (k ,"k ' )  E [Dp(-~, t)Bq(-k---k', t) + Bq(rk,' t)Dp(-k--~k',t)l. ~ ' ,  (7) 

_o0 p+q=r 

e o  

" - -  o o  p - } - q = r  " 

k 2 L1 - d 2 klk2 . 2 F -  
dt k 2 Re 

is an operator. 

The initial conditions for the functions Dr(E, t) and B (~, t) are 
r 

.D r(~.!O) =B r(~ 0)=0 (r>2), (9) 

as follows from (3). 

The evolution of all the perturbations cannot befollowed in the numerical calculations, 
so we consider a finite number of these perturbations. We replace the integrals on the right 
sides of Eqs, (7) and (8) by finite sums, and we reduce the problem to the solution of a sys- 
tem of inhomogeneous second-order equations for the functions of the r-th approximation, D r" 

t) and Br( , t). 

System (7), (8), in which the integrals on the right sides are replaced by finite sums, 
the ~nitial conditions (9), and law (5) for the behavior of the components of the wave vec- 
tor k, was approximated by a system of finite-difference equations with the help of an ex- 
plicit-difference scheme. This system was solved numerically. Functions of the first ap- 
proximation Dx(~, t) and B1(k, t) are calculated in accordance with (6). 

The results calculated for Re = 104 , A = 0.5, --N & n & N, --M & m S M, N = M = 4, and 
~* = (0.02; 0.I) are shown in Fig. i; here the curves show the ratio of the perturbation 
energy at time t, 

t o  t h e  i n i t i a l  e n e r g y  E(0)  f o r  r = 1,  2, . . . ,  6 ( ~ i s  t h e  complex  c o n j u g a t e ) .  

I n  t h e  f i r s t ,  l i n e a r ,  a p p r o x i m a t i o n  ( c u r v e  1 ) ,  t h e  e n e r g y  o f  t h e  eddy p e r t u r b a t i o n s  
d e c a y s  as  t i m e  e l a p s e s .  T h e r e  a r e  e x t r e m a  on Curve  1 b e c a u s e  t h i s  c u r v e  i s  a m e a s u r e  o f  
t h e  t o t a l  e n e r g y  o f  t h e  (2N + 1) (2M + 1) -- 1 n o n i n t e r a c t i n g  eddy p e r t u r b a t i o n s  w i t h  v a r i o u s  
wave  n u m b e r s ,  w h i c h  r e a c h  a maximum e n e r g y  a t  d i f f e r e n t  t i m e s ,  d e p e n d i n g  on t h e  r a t i o  nk~ /  
mk~ (Fig. 2). 

Analysis of these results shows that, for these parameter values, there is a strong 
interaction betweenperturbations, which results in rapid energy exchange between perturba- 
tions. In turn, this exchange leads to a more rapid removal of energy from the average flow. 
The energy obtained from the average flow is concentrated in the individual perturbations, 
so that the energy of these perturbations increases without bond, as does the energy of the 

eddy system as a whole. 

We See from Fig. ithat the perturbation energy calculated in the third approximation 
(r = 3) gives a physically correct description of the nonlinear development of turbulent 

perturbations. 

The higher-order approximations refine this solution. 

The results of these calculations of the energy of turbulent perturbations by the method 
of successive approximations show that this method can be applied to the solution of non- 
linear problems of the evolution of turbulence and give results in agreement with the avail- 

able experimental data. 
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Fig. i Fig. 2 

Fig. i. Time evolution of the normalized perturbation energy 
with various approximations r taken into account (the curves 
are labeled with the value of r). 

Fig. 2. Ti~e evolution of the energy of individual perSurba- 
tions, i) ~ =+(0.08; 0.i); 2) ~n =§ 0.2); 3) ~n = 
_(,.0.08; 0.3);  4) I ~  = (0.08; 0.4) ;  5) 1~n = (0.02; 0.2);  6) 
~n : (0.06; 0.4). 

NOTATION 
-> + -~ 

u(x, t ) ,  p(x, t ) ,  perturbations of the veloci ty  and pressure, respect ively;  "~, kine- 
matic viscosity; p, density; ~-i, scale dimension of the eddies; A~ initial amplitude; Re = 

~-2"0-1,  Reynolds number; ~(k), two-dimensional Dirac function; ~i j ,  Kronecker del ta ;  ~ 
(mk*~; nk*); k' = k~ + k~. 

i. 

. 

3. 
4. 
5. 
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